B ==

Artificial Intelligence

Lecture:
Problem Solving using Search - (Single agent search)
Uninformed Search

Example: 8-queens

State: any arrangement of up to 8 queens on the board
Operation: add a queen (incremental), move a queen (fix-it)
Initial state: no queens on board

Goal state: 8 queens, with no queen is attacked

Solution Path: The set of operations that allowed you to get to the
The board that you see above at the indicated positions.

Example: 8-puzzle
5 4 1 2 3
6 1 8 8 4
7 3 2 7 6 5
Start State Goal State

¢ State:

* Operators:

* Goal test:

* Solution path:

Example: 8-puzzle

5 ||| 4 1|l 2 ||| 3

6 ([1] 8 8 4

7l 3|l 2 71l 6 ||l 5
Start State Goal State

jamming
* Goal:

* State:

* Solution:

* Operators: moving blank left, right, up, down (ignore

)

goal state
integer location of tiles (ignore intermediate locations)

move 4 tile to blank, move 1 tile blank, etc.

e
Search

* What is Search?

* Formulate appropriate problems in optimization and planning

(sequence of actions to achieve a goal) as search tasks: initial state,

operators, goal test, path cost

Search Tree

List all Possible Path
Eliminate Cycles from paths
Result: Search Tree

The basic search algorithm

Let L be a list containing the initial state (L= the fringe)
Loop

if L 1s empty return failure

Node € select (L)

if Node 1s a goal
then return Node
(the path from initial state to Node)
else generate all successors of Node, and

merge the newly generated states into L
End Loop

B =

Evaluating Search Strategies

* Completeness
o Guarantees finding a solution whenever one exists
* Time complexity

- How long (worst or average case) does it take to find a solution? Usually

measured in terms of the number of nodes expanded

®* Space complexity

- How much space is used by the algorithm? Usually measured in terms of the

maximum size of the “nodes” list during the search
¢ Optimality/Admissibility

o If a solution is found, is it guaranteed to be an optimal one? That is, is it the one

with minimum cost?

Problem solving

* We want:

- To automatically solve a problem

* We need:

- A representation of the problem
o Algorithms that use some strategy to solve the problem defined in that

representation

Problem representation

* General:

- State space: a problem is divided into a set of resolution steps from
the initial state to the goal state
- Reduction to sub-problems: a problem is arranged into a hierarchy

of sub-problems
* Specific:

o Game resolution

- Constraints satisfaction

States

* A problem is defined by its elements and their
relations.

* In each instant of the resolution of a problem,

those elements have specific descriptors (How to
select them?) and relations.

* A state is a representation of those elements in
a given moment.

* Two special states are defined:

- Initial state (starting point)
- Final state (goal state

e ==

State modification: successor function

* A successor function is needed to move between
different states.

* A successor function is a description of possible
actions, a set of operators. It is a transformation
function on a state representation, which convert it
into another state.

* The successor function defines a relation of
accessibility among states.

* Representation of the successor function:

- Conditions of applicability
- Transtformation tunction

/\y

State space

* The state space is the set of all states reachable
from the initial state.

* It forms a graph (or map) in which the nodes are
states and the arcs between nodes are actions.

* A path in the state space is a sequence of states
connected by a sequence of actions.

* The solution of the problem is part of the map
formed by the state space.

P

Problem solution

* A solution in the state space is a path from the

initial state to a goal state or, sometimes, just a
goal state.

®* Path/solution cost: function that assigns a

numeric cost to each path, the cost of applying
the operators to the states

* Solution quality is measured by the path cost

function, and an optimal solution has the
lowest path cost among all solutions.

* Solutions: any, an optimal one, all. Cost is

important dependinlzi;l on the problem and the
type of solution sought.

Problem description

* Components:

> State space (explicitly or implicitly defined)

o Initial state

- Goal state (or the conditions it has to fulfill)

- Available actions (operators to change state)

- Restrictions (e.g., cost)

o Elements of the domain which are relevant to the
problem (e.g., incomplete knowledge of the starting
point)

> Type of solution:

» Sequence of operators or goal state
« Any, an optimal one (cost definition needed), all

__— il

Uninformed vs. informed search

¢ Uninformed search strategies

o Also known as “blind search,” uninformed search strategies use no
information about the likely “direction” of the goal node(s)
o Uninformed search methods: Breadth-first, depth-first, depth-limited,

uniform-cost, depth-first iterative deepening, bidirectional
* Informed search strategies

o Also known as “heuristic search” informed search strategies use

information about the domain to (try to) (usually) head in the general

direction of the goal node(s)

o Informed search methods: Hill climbing, best-first, greedy search, beam search,
A, A*

e ==

Uninformed

1. Search without information
2. No Knowledge

3. Time Consuming

4. More complexity - time and

space

5. BFS, DFS

Informed

1. Search with information

2. use knowledge to find steps
to solution

3. quick solution
4. less complexity

5. A*, Best First, AO*

Breadth-First Search (BFS)

* Uninformed Search technique
* FIFO (Queue)
* Expand shallowest unexpanded node

e Level search

* Fringe: nodes waiting in a queue to be explored, also called OPEN

« Optimal - shortest path
* Implementation:

o For BFS, fringe is a first-in-first-out (FIFO) queue

o new successors go at end of the queue

* Repeated states?

- Simple strategy: do not add parent of a node as a leaf

BFS Algorithm

Breadth first search
Let fringe be a list containing the initial state
Loop
if fringe 1s empty return failure
Node € remove-first (fringe)
if Node 1s a goal
then return the path from initial state to Node
else generate all successors of Node, and
(merge the newly generated nodes 1nto fringe)
add generated nodes to the back of fringe
End Loop

Example: Map Navigation

State Space:

S = start, G = goal, other nodes = intermediate states, links = legal transitions

(B)

pENCENG
o 3
N

O—® (®)

BFS Search Tree
S

BFS Search Tree

BFS Search Tree

BFS Search Tree

BFS Search Tree 6.03 ©

B — —

BFS Search Tree €y B ©
: ©
= ".
D (B> «©
(A (D)

(B D o E
© B @ & @%
OE ® B® OO®®

I!n'o’er %— 1rst search

19 19 17

Depth-First Search (DFS)

* Uninformed Search Non Optimal

. Stack (LIFO) Time complexity
* Expand deepest unexpanded node

« LIFO
« Deepest Node

« Incomplete ---> 1. Loop 2. search space infinite i.e. unlimited depth

* Implementation:

o For DFS, fringe is a LIFO queue

o new successors go at beginning of the queue
* Repeated nodes?

- Simple strategy: Do not add a state as a leaf if that state is on the path

from the root to the current node

DFS Algorithm
Depth First Search
Let fringe be a list containing the initial state
Loop
if fringe 1S empty refurn failure

Node € remove-first (fringe)
1f Node 1s a goal
then return the path from initial state to Node
else generate all successors of Node, and
merge the newly generated nodes 1nto fringe
add generated nodes to the front of fringe
End Loop

DFS Search Tree
(SO

(A (D

——

DFS Search Tree

——

DFS Search Tree

DFS Search Tree 3.03 ©

.

DFS Search Tree €y ® ©
] | 7

Depth-first search

15 15 13

19 19 17 © 25

Evaluation of Search Algorithms

* Completeness
> does it always find a solution if one exists?

* Optimality
> does it always find a least-cost (or min depth) solution?

* Time complexity
- number of nodes generated (worst case)

®* Space complexity
- number of nodes in memory (worst case)

* Time and space complexity are measured in terms of
o b: maximum branching factor of the search tree
o d: depth of the least-cost solution
- m: maximum depth of the state space (may be «)

L ==

Breadth-First Search (BFS) Properties

Complete? Yes
®* Optimal? Yes, for the shortest path

* Time complexity? O(b?)

14b+b>+...+b% =0(")
exponential in the depth of the solution d

* Space complexity? O(b%)

same as time - every node is kept in the memory

®* Main practical drawback? exponential space complexity

e

Complexity of Breadth-First Search

 Time Complexity

— assume (worst case) that there is 1 g
goal leaf at the RHS at depth d
— so BFS will generate d=
1
=b +b%+ ... + b9+ pd*1 - \0
= 0 (b9*") /

 Space Complexity

— how many nodes can be in the queue O d=
(worst-case)? 0

— at depth d there are b®" unexpanded d=
nodes in the Q = O (b%*1) 1

N\, b

LAL

Assuming b=10, 10000 nodes/sec,

ExampLs M

nd Memory Requirements for Breadth-First Search

1kbyte/node
Depth of Nodes
Solution Generated Time Memory
2 1100 0.11 seconds 1 MB
4 111,100 11 seconds 106 MB
8 10° 31 hours 1TB
12 10'3 35 years 10 PB

__— .

What is the Complexity of Depth-First Search?
* Time Complexity

o d=

- maximum tree depth = m 0
o assume (worst case) that there is 1 goal d=

leaf at the RHS at depth d so DFS will \ 1
generate O (b™) d=

G 2

@) d=o0

: C/ \‘ d=1

* Space Complexity / \
- how many nodes can be in the queue d=2
(worst-case)?
- at depth m we have b nodes d=3

- and b-1 nodes at earlier depths / \ d=4
o total =b + (m-1)*(b-1) = O(bm)

Wemoryl(equirements for Dept;—gilrst Search

Assuming b=10, m = 12, 10000 nodes/sec,

1kbyte/node
Depth of Nodes
Solution Generated Time Memory
2 10'2 3 years 120kb
4 102 3 years 120kb
8 10" 3 years 120kb
12 10"? 3 years 120Kkb

__— .

Depth-First Search (DFS) Properties

* Complete?
o No. Not complete if tree has unbounded depth
* Optimal?
o No. Solution found first may not be the shortest possible

* Time comple~i+? 0™

o Exponential exponential in the maximum depth of the search tree m

O(bm)

®* Space complexity?
linear in the maximum depth of the search tree m

- Linear

B ===

Comparing DFS and BFS

®* Time complexity: same, but

> In the worst-case BFS is always better than DFS

> Sometime, on the average DFS is better if:

* many goals, no loops and no infinite paths

* BFS is much worse memory-wise

» DFSis linear space
« BFS may store the whole search space.

* In general

» BFS is better if goal is not deep, if infinite paths, if many loops, if small
search space

» DFS is better if many goals, not many loops,
* DFS is much better in terms of memory

B — —

Thank You!

Any Questions?

