
Lecture:
 Problem Solving using Search - (Single agent search)

Uninformed Search

Artificial Intelligence

Example: 8-queens

• State: any arrangement of up to 8 queens on the board
• Operation: add a queen (incremental), move a queen (fix-it)
• Initial state: no queens on board
• Goal state: 8 queens, with no queen is attacked
• Solution Path: The set of operations that allowed you to get to the
The board that you see above at the indicated positions.

Example: 8-puzzle

• State:
• Operators:
• Goal test:
• Solution path:

Example: 8-puzzle

• Operators: moving blank left, right, up, down (ignore

jamming)

• Goal: goal state

• State: integer location of tiles (ignore intermediate locations)

• Solution: move 4 tile to blank, move 1 tile blank, etc.

Search

• What is Search?

• Formulate appropriate problems in optimization and planning

(sequence of actions to achieve a goal) as search tasks: initial state,

operators, goal test, path cost

Search Tree

List all Possible Path
Eliminate Cycles from paths
Result: Search Tree

The basic search algorithm

Evaluating Search Strategies

• Completeness

o Guarantees finding a solution whenever one exists

• Time complexity

o How long (worst or average case) does it take to find a solution? Usually

measured in terms of the number of nodes expanded

• Space complexity

o How much space is used by the algorithm? Usually measured in terms of the

maximum size of the “nodes” list during the search

• Optimality/Admissibility

o If a solution is found, is it guaranteed to be an optimal one? That is, is it the one

with minimum cost?

Problem solving

• We want:

o To automatically solve a problem

• We need:

o A representation of the problem

o Algorithms that use some strategy to solve the problem defined in that

representation

Problem representation

• General:

– State space: a problem is divided into a set of resolution steps from

the initial state to the goal state

– Reduction to sub-problems: a problem is arranged into a hierarchy

of sub-problems

• Specific:

o Game resolution

o Constraints satisfaction

States

• A problem is defined by its elements and their
relations.

• In each instant of the resolution of a problem,
those elements have specific descriptors (How to
select them?) and relations.

• A state is a representation of those elements in
a given moment.

• Two special states are defined:
– Initial state (starting point)
– Final state (goal state)

State modification: successor function

• A successor function is needed to move between
different states.

• A successor function is a description of possible
actions, a set of operators. It is a transformation
function on a state representation, which convert it
into another state.

• The successor function defines a relation of
accessibility among states.

• Representation of the successor function:
o Conditions of applicability
o Transformation function

State space

• The state space is the set of all states reachable

from the initial state.

• It forms a graph (or map) in which the nodes are

states and the arcs between nodes are actions.

• A path in the state space is a sequence of states

connected by a sequence of actions.

• The solution of the problem is part of the map

formed by the state space.

Problem solution

• A solution in the state space is a path from the
initial state to a goal state or, sometimes, just a
goal state.

• Path/solution cost: function that assigns a
numeric cost to each path, the cost of applying
the operators to the states

• Solution quality is measured by the path cost
function, and an optimal solution has the
lowest path cost among all solutions.

• Solutions: any, an optimal one, all. Cost is
important depending on the problem and the
type of solution sought.

Problem description

• Components:
o State space (explicitly or implicitly defined)
o Initial state
o Goal state (or the conditions it has to fulfill)
o Available actions (operators to change state)
o Restrictions (e.g., cost)
o Elements of the domain which are relevant to the

problem (e.g., incomplete knowledge of the starting
point)

o Type of solution:
• Sequence of operators or goal state
• Any, an optimal one (cost definition needed), all

Uninformed vs. informed search

• Uninformed search strategies

o Also known as “blind search,” uninformed search strategies use no

information about the likely “direction” of the goal node(s)

o Uninformed search methods: Breadth-first, depth-first, depth-limited,

uniform-cost, depth-first iterative deepening, bidirectional

• Informed search strategies

o Also known as “heuristic search” informed search strategies use

information about the domain to (try to) (usually) head in the general

direction of the goal node(s)

o Informed search methods: Hill climbing, best-first, greedy search, beam search,

A, A*

Uninformed

1. Search without information

2. No Knowledge

3. Time Consuming

4. More complexity - time and

space

5. BFS, DFS

1. Search with information

2. use knowledge to find steps

to solution

3. quick solution

4. less complexity

5. A*, Best First, AO*

Informed

Breadth-First Search (BFS)

• Uninformed Search technique

• FIFO (Queue)

• Expand shallowest unexpanded node

• Level search

• Fringe: nodes waiting in a queue to be explored, also called OPEN

• Optimal - shortest path

• Implementation:

o For BFS, fringe is a first-in-first-out (FIFO) queue

o new successors go at end of the queue

• Repeated states?

o Simple strategy: do not add parent of a node as a leaf

BFS Algorithm

Example: Map Navigation

S G

A B

D E

C

F

State Space:

S = start, G = goal, other nodes = intermediate states, links = legal transitions

BFS Search Tree
S S G

A B

D E

C

F

Queue = {S}

Select S

Goal(S) = true?

If not, Expand(S)

BFS Search Tree
S S G

A B

D E

C

F
A D

Queue = {A, D}

Select A

Goal(A) = true?

If not, Expand(A)

BFS Search Tree
S S G

A B

D E

C

F
A D

B D

Queue = {D, B, D}

Select D

Goal(D) = true?

If not, expand(D)

BFS Search Tree
S S G

A B

D E

C

F
A D

A EB D

Queue = {B, D, A, E}

Select B
etc.

BFS Search Tree
S S G

A B

D E

C

F
A D

A EB D

B FE S E S BC

Level 3
Queue = {C, E, S, E, S, B, B, F}

BFS Search Tree
S S G

A B

D E

C

F
A D

A EB D

B FE S E S B

GD F B FA D C E A C

C

Level 4
Expand queue until G is at front
Select G
Goal(G) = true

Another Breath-first search
S

A D

B D A E

C E E B B F

D F B F C E A C G

G C G F

14

19 19 17

17 15 15 13

G 25

11

Depth-First Search (DFS)
• Uninformed Search

• Stack (LIFO)

• Expand deepest unexpanded node

• LIFO

• Deepest Node

• Incomplete ---> 1. Loop 2. search space infinite i.e. unlimited depth

• Implementation:

o For DFS, fringe is a LIFO queue

o new successors go at beginning of the queue

• Repeated nodes?

o Simple strategy: Do not add a state as a leaf if that state is on the path

from the root to the current node

Non Optimal
Time complexity

DFS Algorithm

DFS Search Tree
S S G

A B

D E

C

F
A D

Queue = {A,D}

DFS Search Tree
S S G

A B

D E

C

F
A D

B D
Queue = {B,D,D}

DFS Search Tree
S S G

A B

D E

C

F
A D

B D

EC

Queue = {C,E,D,D}

DFS Search Tree
S S G

A B

D E

C

F
A D

B D

E

D F

C

Queue = {D,F,D,D}

DFS Search Tree
S S G

A B

D E

C

F
A D

B D

E

D F

C

G

Queue = {G,D,D}

Depth-first search
S

A D

B D A E

C E E B B F

D F B F C E A C G

G C G F

14

19 19 17

17 15 15 13

G 25

11

Evaluation of Search Algorithms

• Completeness
o does it always find a solution if one exists?

• Optimality
o does it always find a least-cost (or min depth) solution?

• Time complexity
o number of nodes generated (worst case)

• Space complexity
o number of nodes in memory (worst case)

• Time and space complexity are measured in terms of
o b: maximum branching factor of the search tree
o d: depth of the least-cost solution
o m: maximum depth of the state space (may be ∞)

Breadth-First Search (BFS) Properties

• Complete? Yes

• Optimal? Yes, for the shortest path

• Time complexity? O(bd)

• Space complexity? O(bd)

same as time - every node is kept in the memory

• Main practical drawback? exponential space complexity

Complexity of Breadth-First Search
• Time Complexity

– assume (worst case) that there is 1
goal leaf at the RHS at depth d

– so BFS will generate

 = b + b2+ + bd + bd+1 - b
 = O (bd+1)

• Space Complexity
– how many nodes can be in the queue

(worst-case)?
– at depth d there are bd+1 unexpanded

nodes in the Q = O (bd+1)

d=
0

d=
1
d=
2

d=
0

d=
1
d=
2G

G

Examples of Time and Memory Requirements for Breadth-First Search

Depth of Nodes
Solution Generated Time Memory

2 1100 0.11 seconds 1 MB

4 111,100 11 seconds 106 MB

8 109 31 hours 1 TB

12 1013 35 years 10 PB

Assuming b=10, 10000 nodes/sec,
1kbyte/node

What is the Complexity of Depth-First Search?
• Time Complexity

o maximum tree depth = m

o assume (worst case) that there is 1 goal

leaf at the RHS at depth d so DFS will

generate O (bm)

• Space Complexity

o how many nodes can be in the queue

(worst-case)?

o at depth m we have b nodes

o and b-1 nodes at earlier depths

o total = b + (m-1)*(b-1) = O(bm)

d=
0

d=
1
d=
2G

d=0

d=1

d=2

d=3

d=4

Examples of Time and Memory Requirements for Depth-First Search

Depth of Nodes
Solution Generated Time Memory

2 1012 3 years 120kb

4 1012 3 years 120kb

8 1012 3 years 120kb

12 1012 3 years 120kb

Assuming b=10, m = 12, 10000 nodes/sec,
1kbyte/node

Depth-First Search (DFS) Properties

• Complete?

o No. Not complete if tree has unbounded depth

• Optimal?

o No. Solution found first may not be the shortest possible

• Time complexity?

o Exponential

• Space complexity?

o Linear

Comparing DFS and BFS

• Time complexity: same, but

o In the worst-case BFS is always better than DFS

o Sometime, on the average DFS is better if:

• many goals, no loops and no infinite paths

• BFS is much worse memory-wise

• DFS is linear space
• BFS may store the whole search space.

• In general

• BFS is better if goal is not deep, if infinite paths, if many loops, if small
search space

• DFS is better if many goals, not many loops,
• DFS is much better in terms of memory

Thank You!

Any Questions?

